ࡱ>   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry Fm7 Workbook5ETExtDataSummaryInformation(< !"#$%&') sL@   D@ @}@@ @@@@ Oh+'0  px  userwang1Microsoft Excel@{o@:D|@OJ ɀ\p Administrator Ba==<)8X@"1[SO1[SO1[SO1[SO1[SO1[SO1" N[_GB23121[SO1" N[_GB23121" N[_GB23121wiSO1[SO1.Times New Roman1.Times New Roman1.Times New Roman1" N[_GB23121?[SO1[SO1.Times New Roman1.Times New Roman1[SO1" wiSO_GB23121.Times New Roman1$[SO1 [SO1.Times New Roman1" wiSO_GB23121N[1[SO1?Tahoma1[SO1[SO1[SO1 [SO1[SO1 [SO1h8[SO1,8[SO18[SO18[SO1[SO1[SO1[SO14[SO1 [SO1[SO1 [SO14[SO1<[SO1?[SO1>[SO1[SO1.Times New Roman1.Times New Roman1.Times New Roman""#,##0;""\-#,##0""#,##0;[Red]""\-#,##0""#,##0.00;""\-#,##0.00#""#,##0.00;[Red]""\-#,##0.007*2_ ""* #,##0_ ;_ ""* \-#,##0_ ;_ ""* "-"_ ;_ @_ .))_ * #,##0_ ;_ * \-#,##0_ ;_ * "-"_ ;_ @_ ?,:_ ""* #,##0.00_ ;_ ""* \-#,##0.00_ ;_ ""* "-"??_ ;_ @_ 6+1_ * #,##0.00_ ;_ * \-#,##0.00_ ;_ * "-"??_ ;_ @_ \$#,##0_);\(\$#,##0\)\$#,##0_);[Red]\(\$#,##0\) \$#,##0.00_);\(\$#,##0.00\)% \$#,##0.00_);[Red]\(\$#,##0.00\),'_-* #,##0_-;\-* #,##0_-;_-* "-"_-;_-@_-4/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-=8_-""* #,##0.00_-;\-""* #,##0.00_-;_-""* "-"??_-;_-@_-50_-""* #,##0_-;\-""* #,##0_-;_-""* "-"_-;_-@_- # # # #            # #- #* #. # #/ #, # # #. #, #3 $ $ $ $$ $1 $4  % &P 'P (  ( )-      ** +a>   ,  -ff7 . / 0`   $> $ $9 $$ $1 $5 1+ 2 3 /       X   0@ @ 8@ @ 8@ @ 8@ @ 8@ 8@ ( 8@ @ 8@ @ 8@ @ 8@ @ 8@ @  %  %8@ @ 8@ 8@  %8@ @ 4%<  4<@  4<@ @  4%<@  4<@  4%<@   (@ @   (@ @ x@ @ *8""@ @  8@ @  0@ @  0@   (@ @  8 "@ @  "8@ @  8 @ % 8@ @  8@ 4@@ <@ @  8@ @ 4@ @  <@ 4@ @  <@@ 4 @ <@ @ 5  6  7)8"" 7% 7)8 "@ x@ @ *8""@ @ *8""@ @ 7*8""@ @     *8""@ @ -8 "@ @ *8" @ -8 @ *8" @ *8 @ *8   *8 "@ @ *8 @ *" @ *8" @ *8 @ -8"@ @ -8" @ -8 -8""@ @            :<@ @ x@ 8@  0 x@ @ x@  x@ 8@ @ !*8""@ @ !*8 "@ @ 8@ @ 8@ 8@  0@ @  0@  0@ 8@ @ 8@ 8@ 9<@ @ 8@ 8@ 8  0@ @  8@@  8@  8@ @ 8@ @ x@ @ x@  x@  x@ @ x@ x@ x@ @ x@ x@ <@ @ <@ @ <@ 8@ @ 8@ 8@ @  `@   `@  -8"@ @ -8" @ *8"@ @ *8" @  @  @  0@ @  0@ @  0@  8@  8@  <@ @ ||n5}-} _-;_-""}-} _-;_-""}-} _-;_-""}-} _-;_-""}A} _-;_-""ef-@_-_ }A} _-;_-""ef-@_-_ }A} _-;_-""ef-@_-_ }A} _-;_-""ef-@_-_ }A} _-;_-""ef-@_-_ }A} _-;_-""ef -@_-_ }A} _-;_-""L-@_-_ }A} _-;_-""L-@_-_ }A} _-;_-""L-@_-_ }A} _-;_-""L-@_-_ }A} _-;_-""L-@_-_ }A} _-;_-""L -@_-_ }A} _-;_-""23-@_-_ }A} _-;_-""23-@_-_ }A} _-;_-""23-@_-_ }A} _-;_-""23-@_-_ }A}  _-;_-""23-@_-_ }A}! _-;_-""23 -@_-_ }-}# _-;_-""}A}$ _-;_-""-@_-_ }A}% _-;_-""?-@_-_ }A}& _-;_-""23-@_-_ }-}' _-;_-""}A}( _-;_-""-@_-_ }A}, a_-;_-""-@_-_ }U}- _-;_-""-@_-_  }}0 }_-;_-""-@_-_    }}1 _-;_-""-@_-_ ??? ??? ??? ???}-}2 _-;_-""}-}3 _-;_-""}A}4 }_-;_-""-@_-_ }A}7 _-;_-""-@_-_ }A}8 _-;_-""-@_-_ }A}9 _-;_-""-@_-_ }A}: _-;_-""-@_-_ }A}; _-;_-""-@_-_ }A}< _-;_-"" -@_-_ }A}= e_-;_-""-@_-_ }}> ???_-;_-""-@_-_ ??? ??? ??? ???}}? ??v_-;_-""̙-@_-_    }x}A_-;_-""̙-@_  }(}U _-;_-""}(}V _-;_-""}(}W _-;_-""}(}X _-;_-""}(}Y _-;_-""}(}Z _-;_-""}(}r _-;_-""}(}s _-;_-""}x}t _-;_-""̙-@_  }(}u _-;_-""}d}v _-;_-""̙-@_  }(}z _-;_-""}(}_-;_-""}(}_-;_-""}(}_-;_-""}(}_-;_-""}(}_-;_-""}(}_-;_-""}(}_-;_-""!20% - :_eW[r 1O20% - :_eW[r 1 ef %!20% - :_eW[r 2O"20% - :_eW[r 2 ef %!20% - :_eW[r 3O&20% - :_eW[r 3 ef %!20% - :_eW[r 4O*20% - :_eW[r 4 ef %!20% - :_eW[r 5O.20% - :_eW[r 5 ef %!20% - :_eW[r 6O220% - :_eW[r 6  ef %!40% - :_eW[r 1O40% - :_eW[r 1 L %!40% - :_eW[r 2O#40% - :_eW[r 2 L湸 %!40% - :_eW[r 3O'40% - :_eW[r 3 L %!40% - :_eW[r 4O+40% - :_eW[r 4 L %!40% - :_eW[r 5O/40% - :_eW[r 5 L %!40% - :_eW[r 6O340% - :_eW[r 6  Lմ %!60% - :_eW[r 1O 60% - :_eW[r 1 23 %!60% - :_eW[r 2O$60% - :_eW[r 2 23ٗ %!60% - :_eW[r 3O(60% - :_eW[r 3 23֚ %!60% - :_eW[r 4O,60% - :_eW[r 4 23 %! 60% - :_eW[r 5O060% - :_eW[r 5 23 %!!60% - :_eW[r 6O460% - :_eW[r 6  23 %"~vRk #h+h I}% $h 1=h 1 I}%O %h 2=h 2 I}%? &h 3=h 3 I}%23 'h 4/h 4 I}%(]5]  %8^ĉ )8^ĉ 2 *8^ĉ 3+c,}Y5}Y  a% -Gl;`GGl;` %OO.'^/ '^[0] 0{o{  }% 1hgUSCQQoQ  ???%????????? ??? ?eQoeQ ̙ ??v% @ $ ]vc Alʑ^ lʑ  XTableStyleMedium9PivotStyleLight16`$Sheet2VVg -}^SY TQut^geLygؚf[S0f[MO 3uN~f[y0N~f[y Ty ;Nc(Wxvyxyvя5t^N,{N\Ob\O TINShvf[/ge3u[8hS_t^(W&yx~9NCQ f[b[[a Tyegnc Tev Sh Rir Ty0~+R0e /f&TEI/SCIh"}4b_ 1979.11.17oRYecZSX$N{|bD~TOSv!jWS{lxvz V[6qyf[WёYA modified Perry s conjugate gradient method- based derivative-free method for solving large-scale nonlinear monotone equations/ Applied Mathematics and Computation SCI 2015.2%)/fckRSёOSv^!jNؚHe{lxvz VnWSw6qyf[WёYComments on/A hybrid conjugate gradient method based on a quadratic relaxation of the Dai-Yuan hybrid conjugate gradient parameter Optimization, SCI 2015.8aRobust CVaR-based portfolio optimization under a general affine data perturbation uncertainty set<Journal of Computational Analysis and Application,SCI 2014.4ZRobust Conditional value-at-risk optimization for Asymmetrically Distributed Asset Returns'Pacific Journal of Optimization,2012,10wmQ 1981.11.19^ ZSXxvzu0tf[ZSXpef[0^(upef[wQ g[y~gven_R|~vI{SR/eV[6qyf[WёfHopf bifurcation and spatio-temporal patterns in a hierarchical network with delays andZ2ZnsymmetryYZ \]  Neurocomputing0VEf[/gg R02015t^11g   Q~b^Xc6R!jWv YBgRRf[xvz VnWSw6qyf[WёeMultiple Nonlinear Oscillations in a D3 D3-Symmetrical Coupled System of Identical Cells with Delays&' *+ % Abstract and Applied Analysis 2013t^5g"# $wYeSYQZSX0ZSXpef[0{pef[zzRpe6OP_Re z_{lV[yyf[WёEMultigrid methods for space fractional partial differential equations Journal of Computational Physics|A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker Planck equationApplied Mathematical ModellingPMoving finite element methods for time fractional partial differential equationsSCIENCE CHINA Mathematics`Spectral collocation methods for Volterra-integro differential equations with noncompact kernels0Journal of Computational and Applied MathematicsĞR 1977t^ 11g 4eYecxvzu0ZSX&WN YBgQ~NenRRf[tvhy^:WΘi Ogxvz(S71471020) V[6qyf[Wёb NyvdConvergence dynamics of stochastic Cohen-Grossberg neural networks with unbounded distributed delays6IEEE Transactions on Neural Networks, 22(2011) 561-572$QenT:gHe^v^~'`|~RRf[xvz(S2016JJ1001) wypgR}Sharp function inequalities and boundness for toeplitz type operator related to general fractional singular integral operator9Publications de l'Institut Mathematique, 92(2012)165-176.hy^:WΘi OgoSvenRRf[xvzS15A003 YeS͑pSMeasuring and forecasting volatility in Chinese stock market using HAR-CJ-M model. .Abstract and Applied Analysis, 2013(2013)1-13.Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderon-Zygmund kernel.5Journal of Mathematical Inequalities, 82014 453-464.eStability analysis of switched cellular neural networks: A mode-dependent average dwell time approach!Neural Networks, 82( 2016) 84 99qOn the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities7Journal of Differential Equations, 2562014 2101-2114.ΐ^ T 1984.11.16 ZSXf[S0ZSXf[MOWNXϑ_elv'Yĉ!jR`vOo`|~wƋ~{tT^(uxvz V[6qyf[WёYXTOoDiscernibility matrix simplification with new attribute dependency functions for incomplete information systems!Knowledge and Information Systems'Yĉ!j!j|vOo`|~ĉRcS{lSvQ^(uxvzZ An incremental approach to attribute reduction of dynamic set-valued information systems 9International Journal of Machine Learning and CyberneticsUHomomorphisms-based attribute reduction of dynamic fuzzy covering information systems)International Journal of General Systems 4Homomorphisms between covering approximation spaces Fundamenta InformaticaebCaracteristic matrixes-based knowledge reduction in dynamic covering decision information systems Knowledge-Based Systems]Decision-theoretic Rough Sets-based Three-way Approximations of Interval- valued Fuzzy Sets hKnowledge reduction of dynamic covering decision information systems with the variation of object sets Information SciencesNgY 1985.07.17ZSXxvzu0ZSX((uOP_Re z~_gOSxvzyP[:\[O9ev Poisson-Boltzmann !jWBA Nonmonotone PSB Algorithm for Solving Unconstrained Optimization0 Computational Optimization and Applications 2012+,&^yP[:\[vuirY5u!jW{lxvzYeSdA new Linear Poisson-Boltzmann Equation and Finite Element Solver by Solution Decomposition Approach, Communications in Mathematical Sciences 2015'(zAn Effective Minimization Protocol for Solving a Size-modified Poisson-Boltzmann Equation for Biomolecule in Ionic Solvent= International Journal of Numerical Analysis and Modeling 2015894TT 1978.12.22ZSX0tf[ZSXeW NRp[tSvQ(WenRpe6_Re zv^(uV[6qyHNote for tripled and quadruple fixed point of the mixed monotone mapings'Bulletin of Korean Mathematical SocietyMMathematical models to estimate the mass of leaf and sketch the shape of tree#Mathematical Modelling and AnalysiseUniqueness results and convergence of successive approximations for fractional differential equations/Hacettepe Journal of Mathematics and Statistics _=N 1979.11.20 pef[0Џy{f[Nc6R^IQn^QOSv_g(Bundle)WelSvQ^(u VnWSw6qyf[Rt^WёyvWAn improved inversion-free method for solving the matrix equation X + AX^{"\alpha}A = QEJournal of Computational and Applied Mathematics, 253 (2013) 200 203.^IQn^QOSv_gW{lxvz VnWSwYeSRt^yvFFurther studies on the Wei Yao Liu nonlinear conjugate gradient method9Applied Mathematics and Computation, 219 (2013) 7616 7621Comments on:   A family of derivative-free conjugate gradient methodsfor large-scale nonlinear systems of equations  [J. Comput. Appl. Math.224 (2009) 11 19],GJournal of Computational and Applied Mathematics, 236 (2012) 4344-4347.hA note on   A globally convergent BFGS method with nonmonotone line search for non-convex minimization 8Applied Mathematics and Computation, 219 (2012) 764-766.&TNgofpef[-^(upef[Yye-zzRpe6[Amibcee z(NSFC11301040)=Parameter identification in fractional differential equations2Acta Mathematica Scientia 33(3), pp: < 855-864, 2013Rpe6ibcee z*gwSpevBl(NSFC11226166)KThe quasi-reversibility method to solve heat equations with mixed boundary CActa Mathematica Sinica, English Series, 29(8), pp: 1617-1628, 2013GSimplified Tikhonov regularization for two kinds of parabolic equations@Journal of Korean Mathematical Society, vol. 48, 2011: 311-327.3z`ibce-NTikhonovckRS|pev6e[es NSWS^'Yf[f[b, 45(1), pp: 32-36, 2013Ng^Bl 1965.2.23pef[ ~f[0isNpet~:gsX-NllNYWRgǏ z V[6qyf[WёyvNTwo-sided discounted potential measures for spectrally negative Lvy processes5Statistics and Probability Letters, 2015,100(1):67-76QAsymptotic properties of supercritical branching processes in random environments"Front Math China,2014,9(4):737-751YWeighted moments for a supercritical Branching process in a varying or random environment;Science in China Series A: Mathematics,2011,54(7):1437-1444(Diffusion occupation time before exiting#Front Math China,2014,9(4):843-861.IOn pre-exit joint occupation times for spectrally negative Lvy processes3Statistics and Probability Letters,2014,94(1):48-55:gsX-N$N'`RgǏ zvgP'`(-NVyf[:pef[,2015,45(5):611-622llsX-NlllyisQUOs^GWSvQlQv:_gP[tpef[irtf[b,2011,31(2):508-517RNN 1964.11.16$x~s||P[hKm-NvvsQpePost-processing and two-grid methods for fourth order problems Vpef[O(AMS) NVHYecT\OjAsymptotic stability of exact and discrete solutions for neutral multidelay-integro-differential equationsAppl. Math. Model. 2011^~'`ewz~ce|~ؚHe{lSpebV~nuAmLR0u`ċ0OTKmpef[!jWxvz, S2012ZX10001001-6-1, V[ASNN͑'YNyP[yv yb^Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity "Non. Anal.,: RWA, 31 (2016):23 37.YAttractors for the semilinear reaction- diffusion equation with distribution derivatives "J. Math.Phys.,2013,542013 092701fThe existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space"J. Math.Phys.,2012,532012 082703hTOQ 1977.12.1$N{|yrk^~'`e z~v{lNtxvzXConvergence properties of an iterative method for solving symmetric nonlinear equations,EJournal of Optimization Theory and Applications, 164 (2015) 277-289. JAn inexact PRP conjugate gradient method for symmetric nonlinear equationsBNumerical Functional Analysis a<nd Optimization, 35 (2014) 370-388.ZOn the convergence properties of the unmodified PRP method with a non-descent line search,4Optimization Methods and Software, 29 2014 484-496.CA short note on the global convergence of the unmodified PRP method)Optimization Letters, 7 (2013) 1367-1372. _R 1986t^9g7epef[0W@xpef[sQN{/g~pe-Nޏ~yXNyv"NjuVe z V[6qyf[WёYXTO;Nc2On products of consecutive arithmetic progressionsJ. Number Theory0SCI(4:S)02015?Some observations on the Diophantine equation $f(x)f(y)=f(z)^2$Colloq. Math.0SCI(4:S)02016PRight triangle and parallelogram pairs with a common area and a common perimeterJ. Number Theory0SCI(4:S)02016 f[b Tyvz  f[b;N{b~{ T f[bf[MOċ[RYO;N-^~{ T 8A{#t^ g e s 7^ 7ZSXxvzu 7pef[ 7|9_'`AmSORf[-NRpe6_Re z㉄v['`xvz 7GApproximate controllability of fractional partial differential equation 7&Advances in Difference Equations, 2015 7SCI6eU_ 7|9_'`AmSORf[-NRpe6e z㉄v['`txvz 7`Existence and uniqueness of mild solutions for class of nonlinear fractional evolution equation 7&Advances in Difference Equations, 2014 7Rpe6_yRt(W|9_'`AmSORf[-Nv^(uxvz 7  VnWSwybS 7UComplete controllability of fractional neutral differential systmes in abstract space 7"Abstract and Applied Analysis,2013 7^~'`Rpe6SU\e z㉄vяeWё3NCQW^f[b  74llmQW~gPgeROSSvQ(WlQ] z-Nv^(ub/gxvz-NVlQf[Oyf[b/gVY NI{VY,{NMDynamic design height of embankment preloading soil in Dongting lake district$Applied Mechanics and Materials 2012 7W(g] z~gPgeY:\^t0EN'`OSS8h_b/gVnWSwyf[b/gۏekVY NI{VYAn Optimal Method for Diffusion Parameters of Nonlinear Diffusion Problem of Drug Releasing in 2D-Disc Device by Separate Variable/ Method Mathematical Problems in Engineering2014+  7SCI,EI 7ؚlQoW0WWg irelS] zb/gxvz,{ N3Strength of asphalt mixtures with multi-scale gains9International Conference of Transportaion (ICTR2013),2014 7|:gR^ YTPgeirtNRf['`vY:\^Rgel 7 VnWSybQHr>y 2013  7NW 7<<ؚlQoW0WW$XNe]c6R>>,{5\6z 7 NlNQHr>y2013.3 7lRmTe~‰|9_'`SpeSelSSyr'`xvz  7lQNyb(^(ub/gHr), 2013 7}An Optimal control model and the computer algorithm for the diffusion parameter of the drug releasing in the spherical device 7#Information technology journal 2012 7Finite element analysis based on iterated multi-scale analysis for mechanics parameters of composite materials with multi-scale random grains, 7,Mathematical Problems in Engineering 2011/12 7cIdentifying time-dependent drug diffusion parameters in the cylindrical tube by optimal algorithm, #Advanced Materials Research,2011.10NЏ] z0SNS] z 7SA AuB.IDFE;G4I K LL jN# PRxT; VX=YO[)_aNcd/Nfg'Qitj l@ o p$rs[uk0xyd{|_~<|bփHm`l 8 X n ~Icc8 PK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!theme/theme/theme1.xmlYOo5#MvlM6Цۢ7&jHH q Jĥ|@_g{fvuHB#@=$3{~\0aIyWj"i4ai=@RtOI;\|kxC$!֧rXlcyY0&\$X݄-jk iR; IY1*B&(qh\]Zkfr&LC!yİT0j,o^["NY[Y7|]`|bxhT2%}`jzIpV*F)hV@qv֬5\|̭NlXd Zck7V 7`KȄ/|>GA4qYLxd$(^bF!Р?H°)RLp!/М;ʅ!PL3 1ŷ_O@HD/?/ox[!MD f JNFb+1[i$q5f؃ׂ# SE=oƉuZU1pF~bZc|ũ4jJ}$1qc8U8")QHB<ݧԱ. |}:zM2#'vh~;ٽ:&.3C3S!NX෰}Bf"zR#8ꍉ5w[qM(3~Y">0U6?8|M*=y!W>.w3DpzQjpFH3S Sj;:n[|3ۂϗ<;'*iuŘ6{2cqz[V?_O˯r Zw6xx8 Ԍ[Ҵq5s(%!-Q4rpf \}@U*ܢZ<_d${Gu"Vz`3Vd߀yTe8]7RgO#KRtZ͕fB 1REp*ad6Y>fPM:܌X/(ԁLHelCL!Rʿ^jt>)V!1)kdBBUuveDξ楔Ox|Fl*1_*3.ALE/pum']8fYrSd 7Z`*n^ٍrWŤ%R *z? ձ@#) sBYLþi*69mY&\iHł=(K& V.KLDUĕ{D ꦚeNƟg(MN5ߜJV6&3(a/E4r;,/ު"zbf58WV="\pkAf!xqQc, !E:P[| l lt#h &Mwjf})m%.В4vٜ\LcvlmN55xdФ8ǘ/iO^| /S &%0YPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  ɀ  q];  dMbP?_*+%&ffffff?'ffffff?(?)?MHP LaserJet P10085 4XSDDMHP LaserJet P1008 Z(d_5" dX333333?333333?&<3U} } `}  } @} } -} } `Cqw@@8@WX I    tt*W;;;W W                 D D D  D  _  L  ~ ?     S G G~ L?  G  G  L ffffff @  U J G~ L?  G  G  L  GGL  G  G  L  KKF  K  G  L  ~ L@ M! M" M# M$ L% J& G'~ L?  b(  c)  L 3@  `ULMMMML N* G+~ L?  d,  e-  L  a ~ @ /~ @  0 J1 Q2 G3~ g? G4 f5 L~ 4@ U JQQg G6 G7 L  JRRL G8 G9 L  JGGL G: G; L ~ @ < = > ? T P@ GA~ L? GB fC L~ @ U PD PE~ L?  GF  GG  L   GH TI~ g?  GJ  GK  L  GTg  GL  GM  L  GTg  GN  GO  L  GGg  GP  GQ  L  ~ @ R S # T % UU VV~ h?  iW  jX  g~  @  V UY WV~ k?  lZ  m[  L  XYk  n\  o]  L  ZYk  p^  q_  L  GRL  G`  qa  L  GGL  Gb  q_  L  KKF  Gc  qd  L  ~ @ e f # g 1 [h \'~ L?  ri  sj  L~  @  U [k \l~ L?  sm  sn  L  ORS  so  sp  L  ~ @ q r  s % Gt GuL  Gv  Gw  L = ףp0@  `VGGL  tx  uy  L  a GGL  tz  v{  L  a DFl2xxTTxTTTxxTTTxTTTTTxTT !"#$B%B&B'B(@)*+,-./01234,56789:;<=> ? ~ @ | }  0 ~ G G L G G L~ "@ V! !G !G!L ! G ! G ! L ! "GGL " G " G " L " #GGL # G # G # L # ~ $"@ $~ $.A $ $ $ $] $]'~ $w? $ ] $ ] $ w~ $ $@ $ V% %] %]'~ %w? % ] % ] % w % &]]w & ] & ] & w & ']]w ' ] ' ] ' w ' ~ ($@ ( ( (> (? ( (G (G(L ( G ( G ( L~ ( o@ ( U)GGL ) G ) G ) L ) *GGL * G * G * L * +GGL + G + G + L + ,GGL , G , G , L , ` -GGL - G - G - L - a .GGL . G . G . L . a ~ /&@ / / /> /0 /1 /G /G/L / G / G / L~ / @ / U0GGL 0 G 0 G 0 L 0 1GGL 1 G 1 G 1 L 1 2GGL 2 G 2 G 2 L 2 ~ 3(@ 3 3 3 3 3 3^ 3G 3L 3 x 3 x 3 L~ 3 @ 3 V4GGL 4 y 4 y 4 L 4 5GGL 5 z 5 x 5 L 5 6GGL 6 z 6 z 6 L 6 ~ 7*@ 7~ 7@N@ 7# 70 71 7G 7G 7L 7 G 7 G 7 L~ 7 @ 7 U~ 80@8 8G 8G 8L 8 G 8 G 8 L 8 9GGL 9 G 9 G 9 L 9 :GGL : G : G : L : ~ ;,@ ; ; ;# ; ;1 ;{ ;G~ ;L? ; ; G ; L~ ; @ ; U< <{ <G.~ <L? < < < L < =GGL = = = L = ~ >.@ >~ >`A >> >F0 >F >| >}'~ >L? > x > > L~ > #@> `?IH ?~ ?'~ ?L? ? ? ? L ? a D,ltTTxTTTTTTTTTTTTTTTTxT@9ABCDEFGHIJKLMNO,PQ,R,S,TUVWXYZ[@\:@]^_@IH @ @ @L @ @ @ L @ a AIH A~ A~ AL? A A A L A a BIH B~ B~ BL? B B B LB B UCIHL C C C L C "DIHLL EIHL E E E L E "FIHLL GIHL G G G L G HHIHL H H H L H a IHIHL I I I L I a JHIHL J J J L J a KHIHL K K K L K a LHEEEIHL L L L L L a ~ M0@ M~ M!A M M? M% M MG~ ML? M G M  M LM H.!/@ M VN N NG~ NL? N  N G N L N OGL O  O  O L O PGL P  P  P L P QGL Q  Q  Q L Q RGL R  R  R L R SGL S  S  S L S ~ T1@ T T T> T T% T TG TL T G T G T L~ T @ T VU U UG UL U G U G U L U VGL V G V G V L V WGL W G W G W L W ~ X2@ X X X> X0 X~ X XGAXL X G  X G! X LX )P@ X UYGL Y G" Y G# Y G Y ZGL Z G$ Z G% Z G Z [GGL [ G& [ G' [ G [ ~ \3@ \( \) \# \g \* \+ \G, \- \ G. \ G/ \ L~ \ @ \ U]GL ] G0 ] G1 ] L ] ^GL ^ G2 ^ G3 ^ L ^ ~ _4@ _6~ _@:@ _7 _8 _9 _G: _GP~ _L? _ G; _ G< _ L=~ _ @ _ UDlxxT&T&TTTTTTxTTTTTxTTTTTTT`abcdefghijklm nf o;p` `G> `GQ~ `L? ` G? ` G@ ` L= ` a aGA aGB~ aL? a GC a GD a L= a b bGE bGF~ bL? b GG b GH b L= b c cGI cGR~ cL@ c GJ c GK c L= c d dGL dGP~ dL@ d M d N d O d ~ e5@ eX eY e> e e| eFZ eF[ eL\ e G] e G^ e L_ e `e f fFa fFb fLc f Gd f Ge f L_ f g gFf gFg gL g Gh g i g Lj g h hFk hFb hLl h Gm h Gn h L_ h iFFL i Go i Gp i Lq i jFFL j Gr j Gs j Lq j kFFL k Gt k Gu k L lFFL l Gv l Gw l L_ l mFFL m Gx m Gy m Lj m nFFL n z n { n L_ n o4 o p5 p &$@xxxxxxxxTTHTTT2>@<deen_d \^_d_d_d_d_d\^ \^ _dX[MSTWTW_d >DX[EK>DEK>DEK\^\^\^\^\^\^TW X[ ;= ?B CF GJ KL BG MS # $' (+ /2 36 MS 7: TW EF X[      $' TWCD EF TZMS   /2 CD  # (+ 36 7: ;=;= $'7:(+,. #/236/2367: #$'(+,.7:  $'  367:;=MSMSX[X[;=TW36 #$'(. #/2(./2;=MSTWX[   #$'/2367:(.  36;=MSTW7:X[ #$'/2(+,.     enen en >GenenenenenMS7@@ yK kAsymptotic stability of exact and discrete solutions for neutral multidelay-integro-differential equationsggD DocumentSummaryInformation8 CompObj(o՜.+,D՜.+,L    + COMMONORG Sheet2 d ?GKSOProductBuildVer2052-10.1.0.5777 F#Microsoft Office Excel 2003 Biff8Excel.Sheet.89q