当前位置: 网站首页 > 师资队伍 > 研究生导师 > 硕导 > 正文 >

赖安迪

一、基本信息

赖安迪,男,19953月生,工学博士,讲师,硕士生导师。20226月至今,在长沙理工大学任教。主要从事奇弹性理论、金属3D打印、超材料等方面的研究。团队科研条件完备,欢迎具有专业兴趣和志向的学生报考。

联系方式:andi@csust.edu.cn


二、教育背景

2017/09-2022/06,大连理工大学,工程力学专业,博士(直博)

2013/09-2017/06,长沙理工大学,工程力学专业,本科


三、研究领域

结构的奇弹性稳定性与动力学

金属3D打印

超材料-混凝土组合结构


四、项目情况

[1]湖南省教育厅,青年项目,超材料-薄壁结构耦合吸能装置的设计和优化,2023/01至今,在研,主持;

[2]长沙理工大学土木工程重点学科创新性项目,自驱动活性板壳结构的奇弹性稳定性研究,2024/01至今,在研,主持;

[3]大连市科技局,重点学科重大课题,基于表面纳米化技术的城市轨道交通吸能装置设计和优化,2018/01-2021/10已结题,参与。


五、主讲课程

《数学物理方法》《材料力学》《结构力学》


六、学术论文

[1]Lai A D, Zhou J W, Lim C W. Chiral standing spin waves and unidirectional waves of odd elastic cylindrical shells[J]. Journal of Applied Mechanics, 2024, 91(5): 1-27.

[2]Lai A D, Zhou J W, Fu G. Odd elastic stability of cylindrical shells [J]. European Journal of Mechanics - A/Solids, 2024, 104: 105220.

[3]Fu G, Zhou J W, Dai T,Lai A D(通讯作者). Electroelastic effects on local-global buckling of piezoelectric cylindrical shells with stepped thickness[J]. Journal of Mechanics of Materials and Structures, 2024, 19(1): 141-156.

[4]Lai A D, Fu G, Liu P Q. A symplectic analytical approach for torsional buckling of cylindrical shells with asymmetric local defects[J]. International Journal of Structural Stability and Dynamics, 2022: 2350093.

[5]Lai A D, Zhao B, Peng X L, et al. Effects of local thickness defects on the buckling of micro-beam[J]. Applied Mathematics and Mechanics, 2022, 43(5): 729-742.

[6]Lai A D, Jia J F, Zhou Z H, et al. Homotopic analysis for post-buckling of cylindrical shells with local thickness defects[J]. Acta Astronautica, 2022, 193: 44-55.

[7]Lai A D, Jia J F, Qu J L, et al. Local–global buckling of cylindrical shells with wall thinning defects[J]. Mechanics Based Design of Structures and Machines, 2021: 1-20.

[8]Jia J F,Lai A D, Qu J L, et al. Effects of local thinning defects and stepped thickness for free vibration of cylindrical shells using a symplectic exact solution approach[J]. Acta Astronautica, 2021, 178: 658-671.

[9]Jia J F,Lai A D, Li T, et al. A symplectic analytical approach for free vibration of orthotropic cylindrical shells with stepped thickness under arbitrary boundary conditions[J]. Thin-Walled Structures, 2022, 171: 108696.

[10]Jia J F, Xu X S, Li Y Q, Zhu S B, Ni Y W,Lai A D,Tong Z Z, Zhou Z H. Free vibration characteristics of piezoelectric cylindrical shells with stepped thickness using an analytical symplectic approach[J]. Applied Mathematical Modelling, 2023.

[11]Zhao B, Long C Y, Peng X L, Chen J, Liu T, Zhang Z H,Lai A D. Size effect and geometrically nonlinear effect on thermal post-buckling of micro-beams: a new theoretical analysis[J]. Continuum Mechanics and Thermodynamics, 2022, 34(2): 519-532.

[12]Jia J F,Lai A D, Rong D L, et al. Dynamic behaviors of cylindrical shells with geometric imperfection[C]//MATEC Web of Conferences. EDP Sciences, 2019, 293: 01003.

[13]赖安迪,赵建宇,周震寰,徐新生.阶梯圆柱壳屈曲问题的哈密顿方法[J].辽宁工程技术大学学报, 2022, 41(03): 265-269.

[14]吴仕荣,赖安迪,周凯,周震寰,徐新生.弹性板中柱面Lamb波问题的哈密顿体系方法[J].辽宁工程技术大学学报, 2022,41(06): 533-538.

[15]范俊海,贾菊芳,赖安迪,周震寰,徐新生.双层石墨烯系统稳态受迫振动问题中的辛方法[J].计算力学学报, 2020, 37(02):193-198.

[16]贾菊芳,赖安迪,屈建龙等.弹性阶梯圆柱壳自由振动问题的辛分析方法[C]//中国力学学会.中国力学大会-2021+1论文集(第一册), 2022:795. DOI:10.26914/c.cnkihy. 2022.065462.


CopyRight © 2022 All Right Reserved 长沙理工大学 土木工程学院 版权所有
Baidu
map